Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Ophthalmol Sci ; 4(4): 100452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560275

RESUMO

Purpose: To test cefiderocol, a siderophore-cephalosporin antibiotic for topical monotherapy treatment of experimental extensively drug-resistant (XDR) Pseudomonas aeruginosa keratitis. Design: Preclinical study. Subjects and Controls: Deidentified P. aeruginosa keratitis isolates, XDR P. aeruginosa from eye drop outbreak, rabbits, saline, cefiderocol 50 mg/ml, ciprofloxacin 0.3%, and tobramycin 14 mg/ml. Methods Intervention or Testing: Cefiderocol antibacterial activity against P. aeruginosa keratitis isolates (n = 135) was evaluated by minimum inhibitory concentration (MIC) testing. Ocular toxicity/tolerability and antibacterial efficacy were tested in vivo with experimental rabbit models. Corneal concentrations and stability were assessed using a bioassay. Main Outcome Measures: Minimum inhibitory concentration analysis for susceptibility, graded tests for ocular toxicity/tolerability, colony-forming unit (CFU) analysis for bacterial burden, corneal cefiderocol concentrations. Results: One hundred percent of P. aeruginosa keratitis isolates were susceptible to cefiderocol (n = 135), the MIC90 was 0.125 µg/ml including the XDR isolate (MIC = 0.125 µg/ml). Topical cefiderocol 50 mg/ml was minimally toxic to the ocular surface and was well tolerated. For the XDR P. aeruginosa isolate, topical cefiderocol 50 mg/ml, significantly decreased corneal CFU compared with ciprofloxacin 0.3%, tobramycin 14 mg/ml, and saline. In addition, tobramycin 14 mg/ml was more effective than the saline control. Mean cefiderocol corneal concentrations were 191× greater than the MIC90 of the P. aeruginosa keratitis isolates. Refrigerated cefiderocol maintained antimicrobial activity over a 1-month period. Conclusions: These results demonstrate that cefiderocol is well tolerated on rabbit corneas and is effective against P. aeruginosa keratitis isolates in vitro and was effective in vivo against an XDR isolate in a rabbit keratitis model. Given the recent outbreak of keratitis caused by this XDR P. aeruginosa, cefiderocol is a promising additional antibiotic that should be further evaluated for topical treatment of keratitis caused by antibiotic resistant P. aeruginosa. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358321

RESUMO

Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and to a lesser extent S. marcescens. However, it was not able to significantly reduce the number of intraocular S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa and S. marcescens requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data indicate in vivo inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.


Assuntos
Endoftalmite , Infecções por Pseudomonas , Animais , Coelhos , Fluoroquinolonas/farmacologia , Pseudomonas aeruginosa , Serratia marcescens , Comportamento Predatório , Staphylococcus aureus , Proliferação de Células
3.
Front Cell Infect Microbiol ; 13: 1286842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029269

RESUMO

Introduction: Pseudomonas aeruginosa causes vision threatening keratitis. The LasR transcription factor regulates virulence factors in response to the quorum sensing molecule N-3-oxo-dodecanoyl-L-homoserine lactone. P. aeruginosa isolates with lasR mutations are characterized by an iridescent high sheen phenotype caused by a build-up of 2-heptyl-4-quinolone. A previous study demonstrated 22% (n=101) of P. aeruginosa keratitis isolates from India between 2010 and 2016 were sheen positive lasR mutants, and the sheen phenotype correlated with worse clinical outcomes for patients. In this study, a longitudinal collection of P. aeruginosa keratitis isolates from Eastern North America were screened for lasR mutations by the sheen phenotype and sequencing of the lasR gene. Methods: Keratitis isolates (n=399) were classified by sheen phenotype. The lasR gene was cloned from a subset of isolates, sequenced, and tested for loss of function or dominant-negative status based on an azocasein protease assay. A retrospective chart review compared outcomes of keratitis patients infected by sheen positive and negative isolates. Results: A significant increase in sheen positive isolates was observed between 1993 and 2021. Extracellular protease activity was reduced among the sheen positive isolates and a defined lasR mutant. Cloned lasR alleles from the sheen positive isolates were loss of function or dominant negative and differed in sequence from previously reported ocular lasR mutant alleles. Retrospective analysis of patient information suggested significantly better visual outcomes for patients infected by sheen positive isolates. Discussion: These results indicate an increase in lasR mutations among keratitis isolates in the United States and suggest that endemic lasR mutants can cause keratitis.


Assuntos
Ceratite , Pseudomonas aeruginosa , Humanos , Estudos Retrospectivos , Fatores de Transcrição/genética , Endopeptidases , Proteínas de Bactérias/genética , Percepção de Quorum/genética
4.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662319

RESUMO

Pseudomonas aeruginosa causes severe vision threatening keratitis. LasR is a transcription factor that regulates virulence associated genes in response to the quorum sensing molecule N-3-oxo-dodecanoyl-L-homoserine lactone. P. aeruginosa isolates with lasR mutations are characterized by an iridescent high sheen phenotype caused by a build-up of 2-heptyl-4-quinolone. A previous study indicated a high proportion (22 out of 101) of P. aeruginosa keratitis isolates from India between 2010 and 2016 were sheen positive and had mutations in the lasR gene, and the sheen phenotype correlated with worse clinical outcomes for patients. In this study, a longitudinal collection of P. aeruginosa keratitis isolates from Eastern North America were screened for lasR mutations by the sheen phenotype and sequencing of the lasR gene. A significant increase in the frequency of isolates with the sheen positive phenotype was observed in isolates between 1993 and 2021. Extracellular protease activity was lower among the sheen positive isolates and a defined lasR mutant. Cloned lasR alleles from the sheen positive isolates were loss of function or dominant negative and differed in sequence from previously reported ocular lasR mutant alleles. Insertion elements were present in a subset of independent isolates and may represent an endemic source from some of the isolates. Retrospective analysis of patient information suggested significantly better visual outcomes for patients with infected by sheen positive isolates. Together, these results indicate an increasing trend towards lasR mutations among keratitis isolates at a tertiary eye care hospital in the United States.

5.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37745563

RESUMO

Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand White rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and S. marcescens. However, it was not able to significantly reduce S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data suggest in vivo predation of Gram-negative bacteria within the intra-ocular environment.

6.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693441

RESUMO

Purpose: To test cefiderocol, a siderophore-cephalosporin antibiotic for topical monotherapy treatment of experimental extensively drug resistant (XDR) Pseudomonas aeruginosa keratitis. Design: Preclinical study. Subjects and Controls: Deidentified P. aeruginosa keratitis isolates, XDR P. aeruginosa from eye drop outbreak, rabbits, saline, cefiderocol 50 mg/ml, ciprofloxacin 0.3%, and tobramycin 14 mg/ml. Methods Intervention or Testing: Cefiderocol antibacterial activity against P. aeruginosa keratitis isolates (n=135) was evaluated by minimum inhibitory concentration (MIC) testing. Ocular toxicity/tolerability and antibacterial efficacy were tested in vivo with experimental rabbit models. Corneal concentrations and stability were assessed using a bioassay. Main Outcome Measures: MIC analysis for susceptibility, graded tests for ocular toxicity/tolerability, CFU analysis for bacterial burden, corneal cefiderocol concentrations. Results: 100% of P. aeruginosa keratitis isolates were susceptible to cefiderocol (n=135), the MIC90 was 0.125 µg/ml including the XDR isolate (MIC = 0.125 µg/ml). Topical cefiderocol 50 mg/ml was minimally toxic to the ocular surface and was well tolerated. For the XDR P. aeruginosa isolate, topical cefiderocol 50 mg/ml, significantly decreased corneal CFU compared to ciprofloxacin 0.3%, tobramycin 14 mg/ml, and saline. In addition, tobramycin 14 mg/ml was more effective than the saline control. Mean cefiderocol corneal concentrations were 191x greater than the MIC90 of the P. aeruginosa keratitis isolates. Refrigerated cefiderocol maintained antimicrobial activity over a one-month period. Conclusions: These results demonstrate that cefiderocol is well tolerated on rabbit corneas and is effective against P. aeruginosa keratitis isolates in vitro and was effective in vivo against an XDR isolate in a rabbit keratitis model. Given the recent outbreak of keratitis caused by this XDR P. aeruginosa, cefiderocol is a promising additional antibiotic that should be further evaluated for topical treatment of keratitis caused by antibiotic resistant P. aeruginosa.

7.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446740

RESUMO

Adenoviruses are the major cause of ocular viral infections worldwide. Currently, there is no approved antiviral treatment for these eye infections. Cyclopentenylcytosine (CPE-C) is an antiviral that has demonstrated activity against more than 20 viruses. The goals of the current study were to determine the in vitro and in vivo antiviral activity of CPE-C as well as its ocular toxicity. Antiviral activity was evaluated in vitro using standard plaque reduction assays to determine the 50% effective concentrations (EC50s) and in vivo in the Ad5/NZW rabbit ocular replication model. Ocular toxicity was determined in uninfected rabbit eyes following topical ocular application. The in vitro EC50s for CPE-C ranged from 0.03 to 0.059 µg/mL for nine adenovirus types that commonly infect the eye. Ocular toxicity testing determined CPE-C to be non-irritating or practically non-irritating by Draize scoring. In vivo, 3% CPE-C topically administered 4X or 2X daily for 7 days to adenovirus-infected eyes demonstrated effective antiviral activity compared with the negative control and comparable antiviral activity to the positive control, 0.5% cidofovir, topically administered twice daily for 7 days. We conclude CPE-C was relatively non-toxic to rabbit eyes and demonstrated potent anti-adenoviral activity in vitro and in vivo.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Infecções Oculares , Organofosfonatos , Animais , Coelhos , Antivirais/uso terapêutico , Organofosfonatos/farmacologia , Neuropatia Óptica Tóxica/tratamento farmacológico , Citosina/farmacologia , Infecções por Adenoviridae/tratamento farmacológico , Adenoviridae , Infecções Oculares/tratamento farmacológico , Replicação Viral
8.
Ocul Surf ; 28: 254-261, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146902

RESUMO

PURPOSE: Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. METHODS: Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic ΔlasR mutant and co-injected with PBS or B. bacteriovorus. After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. RESULTS: We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n = 24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n = 25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The ΔlasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus. CONCLUSION: These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.


Assuntos
Perfuração da Córnea , Infecções Oculares Bacterianas , Ceratite , Infecções por Pseudomonas , Animais , Coelhos , Pseudomonas aeruginosa , Infecções por Pseudomonas/microbiologia , Ceratite/tratamento farmacológico , Córnea/patologia , Bactérias , Proliferação de Células , Infecções Oculares Bacterianas/microbiologia
9.
Commun Biol ; 6(1): 477, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130912

RESUMO

Biologics are almost exclusively administered systemically, but localized delivery is preferable as it minimizes off-target exposure and allows more aggressive treatments. Topical application of biologics to epithelia is generally ineffective because most are covered with fluids and biologics are washed out too quickly to have significant therapeutic effects. Here we explore the idea that attaching a binding domain can serve as an "anchor" to extend the residency time of biologics on wet epithelia, allowing their effective use even with infrequent applications. We use topical application to the ocular surface as a challenging test since foreign substances are washed out especially efficiently by tear flow and blinking. Our results demonstrate that conjugation of antibodies to wheat germ agglutinin, which binds GlcNAc and sialic acid that are ubiquitously present in tissues, increases their half-life 350-fold upon application to the ocular surface in a mouse model of dry eye, a common and onerous disease in humans. Importantly, antibodies to IL-17A, IL-23, and IL-1ß conjugated to the agglutinin reduces manifestations of dry eye, even when applied just once daily. In contrast, unconjugated antibodies are ineffective. Attaching an anchor to biologics is a simple means to overcome washout and to extend their therapeutic use.


Assuntos
Produtos Biológicos , Síndromes do Olho Seco , Humanos , Camundongos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Olho , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Lágrimas/metabolismo , Mucosa/metabolismo
10.
Ophthalmology ; 130(7): 702-714, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36889466

RESUMO

TOPIC: Understanding approaches to sustainability in cataract surgery and their risks and benefits. CLINICAL RELEVANCE: In the United States, health care is responsible for approximately 8.5% of greenhouse gas (GHG), and cataract surgery is one of the most commonly performed surgical procedures. Ophthalmologists can contribute to reducing GHG emissions, which lead to a steadily increasing list of health concerns ranging from trauma to food instability. METHODS: We conducted a literature review to identify the benefits and risks of sustainability interventions. We then organized these interventions into a decision tree for use by individual surgeons. RESULTS: Identified sustainability interventions fall into the domains of advocacy and education, pharmaceuticals, process, and supplies and waste. Existing literature shows certain interventions may be safe, cost-effective, and environmentally friendly. These include dispensing medications at home to patients after surgery, multi-dosing appropriate medications, training staff to properly sort medical waste, reducing the number of supplies used during surgery, and implementing immediate sequential bilateral cataract surgery where clinically appropriate. The literature was lacking on the benefits or risks for some interventions, such as switching specific single-use supplies to reusables or implementing a hub-and-spoke-style operating room setup. Many of the advocacy and education interventions have inadequate literature specific to ophthalmology but are likely to have minimal risks. CONCLUSIONS: Ophthalmologists can engage in a variety of safe and effective approaches to reduce or eliminate dangerous GHG emissions associated with cataract surgery. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Extração de Catarata , Catarata , Cristalino , Oftalmologistas , Oftalmologia , Humanos
11.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993476

RESUMO

Purpose: Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. Methods: Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic Δ lasR mutant and co-injected with PBS or B. bacteriovorus . After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. Results: We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n=24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n=25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The Δ lasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus . Conclusion: These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.

12.
Pathogens ; 11(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558819

RESUMO

Adenovirus ocular infections are common ocular viral infections seen worldwide, for which there is no approved antiviral therapy available. Ranpirnase is a novel ribonuclease which preferentially degrades tRNA resulting in an inhibition of protein synthesis. The study goal was to determine the anti-adenoviral activity of topical formulations of ranpirnase (OKG-0301) on adenoviral replication in the Ad5/NZW rabbit ocular replication model. NZW rabbits were inoculated in both eyes with human adenovirus type 5 (HAdV5) after corneal scarification. A day later, topical therapy was initiated in both eyes with 0.03% OKG-0301, 0.003% OKG-0301, saline or 0.5% cidofovir. Eyes were cultured to determine HAdV5 eye titers over 2 weeks. OKG-0301 (0.03% and 0.003%) and 0.5% cidofovir decreased viral titers compared to saline. Furthermore, both OKG-0301 formulations and 0.5% cidofovir shortened the duration of the HAdV5 infection compared to saline. Both 0.03% OKG-0301 and 0.003% OKG-0301 demonstrated increased antiviral activity compared to saline in the Ad5/NZW rabbit ocular replication model. The antiviral activity of the OKG-0301 groups was similar to that of the positive antiviral control, 0.5% cidofovir. Ranpirnase (OKG-0301) may be a potential candidate for a topical antiviral for adenoviral eye infections. Further clinical development is warranted.

13.
Infect Immun ; 90(11): e0039922, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317876

RESUMO

Bacterial stress response signaling systems, like the Rcs system are triggered by membrane and cell wall damaging compounds, including antibiotics and immune system factors. These regulatory systems help bacteria survive envelope stress by altering the transcriptome resulting in protective phenotypic changes that may also influence the virulence of the bacterium. This study investigated the role of the Rcs stress response system using a clinical keratitis isolate of Serratia marcescens with a mutation in the gumB gene. GumB, an IgaA ortholog, inhibits activation of the Rcs system, such that mutants have overactive Rcs signaling. Transcriptomic analysis indicated that approximately 15% of all S. marcescens genes were significantly altered with 2-fold or greater changes in expression in the ΔgumB mutant compared to the wild type, indicating a global transcriptional regulatory role for GumB. We further investigated the phenotypic consequences of two classes of genes with altered expression in the ΔgumB mutant expected to contribute to infections: serralysin metalloproteases PrtS, SlpB, and SlpE, and type I pili coded by fimABCD. Secreted fractions from the ΔgumB mutant had reduced cytotoxicity to a corneal cell line, and could be complemented by induced expression of prtS, but not cytolysin shlBA, phospholipase phlAB, or flagellar master regulator flhDC operons. Proteomic analysis, qRT-PCR, and type I pili-dependent yeast agglutination indicated an inhibitory role for the Rcs system in adhesin production. Together these data demonstrate GumB has a global impact on S. marcescens gene expression that had measurable effects on bacterial cytotoxicity and surface adhesin production.


Assuntos
Proteoma , Serratia marcescens , Serratia marcescens/genética , Proteoma/metabolismo , Transcriptoma , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
PLoS One ; 17(9): e0270718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36103519

RESUMO

Medical textiles are subject to particularly harsh disinfection procedures in healthcare settings where exposure risks are high. This work demonstrates a fabric treatment consisting of a reactive silver ink and low surface energy PDMS polymer that provides for superhydrophobicity and antiviral properties against enveloped herpes simplex virus stocks even after extended ultrasonic bleach washing. The antiviral properties of reactive silver ink has not been previously reported or compared with silver nanoparticles. The fabric treatment exhibits high static contact angles and low contact angle hysteresis with water, even after 300 minutes of ultrasonic bleach washing. Similarly, after this bleach washing treatment, the fabric treatment shows reductions of infectious virus quantities by about 2 logs compared to controls for enveloped viruses. The use of silver ink provides for better antiviral efficacy and durability compared to silver nanoparticles due to the use of reactive ionic silver, which demonstrates more conformal coverage of fabric microfibers and better adhesion. This study provides insights for improving the wash durability of antiviral silver fabric treatments and demonstrates a bleach wash durable, repellent antiviral treatment for reusable, functional personal protective equipment applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antivirais , Ácido Hipocloroso , Tinta , Prata/farmacologia , Compostos de Sódio , Têxteis , Ultrassom
15.
Antibiotics (Basel) ; 11(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35203807

RESUMO

The treatment of eye infections is very different than treating other body infections that require systemic anti-infectives. Endophthalmitis, keratitis, conjunctivitis, and other ocular infections are treated with direct injection and with topical drops directly to the infection site. There are no anti-infective susceptibility standards to interpret treatment success, but the systemic standards can be used to guide ocular therapy if the concentration of anti-infective in the ocular tissue is assumed to be higher than the concentration in the blood serum. This Perspective describes: (1) eye infections, (2) diagnostics of eye infections, (3) anti-infective treatment of eye infections, (4) anti-infective resistance of ocular pathogens, and (5) alternative anti-infective delivery and therapy. The data, based on years of clinical and laboratory research, support the premise that ocular infections are less problematic if etiologic agents are laboratory-diagnosed and if prompt, potent, anti-infective therapy is applied. Anti-infective susceptibility should be monitored to assure continued therapeutic success and the possibility of new-found resistance. New delivery systems and therapies may be helpful to better treat future ocular infections.

16.
Curr Eye Res ; 47(4): 505-510, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34854780

RESUMO

PURPOSE: Females and males respond differently to a number of systemic viral infections. Differences between females and males with respect to the severity of keratitis caused by Gram-negative bacteria such as Serratia marcescens are less well established. METHODS: In this study, we injected female and male New Zealand White rabbit corneas with a keratitis isolate of S. marcescens and evaluated the eyes after 48 hours for a number of clinical and microbiological parameters. RESULTS: No statistical differences in bacterial burden and corneal scores were recorded between female and male rabbits although there was a non-significant trend toward a higher frequency of female rabbits demonstrating hypopyons. CONCLUSIONS: This data suggests that for experimental bacterial keratitis studies involving Gram-negative rods, a single sex or mixed group of rabbit is sufficient for evaluating pathology and bacterial burdens. This will reduce the number of animals used for subsequent studies.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Animais , Córnea/patologia , Infecções Oculares Bacterianas/microbiologia , Feminino , Ceratite/microbiologia , Masculino , Coelhos , Serratia marcescens
17.
Artigo em Inglês | MEDLINE | ID: mdl-34731742

RESUMO

Besifloxacin has been embraced for the treatment of ocular bacterial infections. While LC-MS/MS has been used in investigating BSF pharmacokinetics, those costly instruments are not universally available and have complicated requirements for operation and maintenance. Additionally, pharmacokinetics of besifloxacin in dose-intense regimens are still unknown. Herein, a new quantification method was developed employing the widely accessible HPLC with fluorescence detection and applied to an ocular pharmacokinetic study with an intense regimen. Biosamples were pre-treated using protein precipitation. Chromatographic separation was achieved on a C18 column using mobile phase of 0.1% trifluoroacetic acid and acetonitrile. To address the weak fluorescence issue of besifloxacin, effects of detection parameters, elution pattern, pH of mobile phase, and reconstitution solvents were investigated. The method was fully validated per US-FDA guidelines and demonstrated precision (<13%), accuracy (91-112%), lower limit of quantification (5 ng/mL), linearity over clinically relevant concentrations (R2 > 0.999), matrix-effects (93-105%), recoveries (95-106%), and excellent selectivity. The method showed agreement with agar disk diffusion assays for in vitro screening and comparable in vivo performance to LC-MS/MS (Deming Regression, y = 1.010x + 0.123, r = 0.997; Bland-Altman analysis, mean difference was -6.3%; n = 21). Pharmacokinetic parameters suggested superior surface-retentive properties of besifloxacin. Maximum concentrations were 1412 ± 1910 and 0.15 ± 0.12 µg/mL; area under the curve was 1,637 and 1.08 µg·h/g; and half-life was 4.9 and 4.1 h; and pharmacokinetic-to-pharmacodynamic ratios were ≥ 409 and ≤ 17.8 against ocular pathogens in tears and aqueous humor, respectively. This readily available method is sensitive for biosamples and practical for routine use, facilitating besifloxacin therapy development.


Assuntos
Antibacterianos/química , Antibacterianos/farmacocinética , Azepinas/química , Azepinas/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Fluoroquinolonas/química , Fluoroquinolonas/farmacocinética , Ceratite/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Animais , Antibacterianos/administração & dosagem , Humor Aquoso/química , Azepinas/administração & dosagem , Cromatografia Líquida de Alta Pressão/instrumentação , Feminino , Fluorescência , Fluoroquinolonas/administração & dosagem , Humanos , Limite de Detecção , Masculino , Coelhos , Lágrimas/química
18.
Clin Ophthalmol ; 15: 3697-3704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511873

RESUMO

PURPOSE: Prophylactic topical antiseptics used to eliminate bacteria on the ocular surface prior to ocular surgery should be both effective and non-irritating. Five percent povidone iodine (PI) is an accepted antiseptic used for prophylaxis. Dilute 2.5% PI and 0.01% hypochlorous acid (HOCl) may be more patient comfortable and equally effective. PI at 5% and 2.5% were compared to HOCl against a battery of bacterial endophthalmitis isolates using corneoscleral tissue as a solid-phase medium to determine antiseptic efficacy. METHODS: Bacteria from 20 cases of endophthalmitis were tested for the elimination of growth against topical 5% PI, 2.5% PI, HOCl, and no antiseptic using donor corneoscleral tissue. The tissue was inoculated with 103 colony forming units of bacteria prior to a 3-minute contact time with the antiseptics, placed in liquid growth medium, and monitored for growth at three days. No growth indicated antiseptic treatment success. Differences were analyzed using Chi square (χ2). RESULTS: For 20 isolates, 5% PI was comparable to 2.5% PI for preventing bacteria growth (p=0.71), and both were more effective than HOCl (p=0.004). Estimated weighted comparison over a 27-year period indicated that for all bacterial groups, except Streptococcus viridans, 5% PI was equally effective to 2.5% PI for preventing bacterial growth (p=1.0). For Streptococcus viridans, 5% PI was more effective than 2.5% PI (p=0.0001). Both concentrations of PI were more effective than HOCl (p=0.00001). CONCLUSION: Five percent PI appears to be optimal as a prophylaxis prior to ocular surgery.

19.
Antibiotics (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572615

RESUMO

The Rcs phosphorelay is a bacterial stress response system that responds to envelope stresses and in turn controls several virulence-associated pathways, including capsule, flagella, and toxin biosynthesis, of numerous bacterial species. The Rcs system also affects antibiotic tolerance, biofilm formation, and horizontal gene transfer. The Rcs system of the ocular bacterial pathogen Serratia marcescens was recently demonstrated to influence ocular pathogenesis in a rabbit model of keratitis, with Rcs-defective mutants causing greater pathology and Rcs-activated strains demonstrating reduced inflammation. The Rcs system is activated by a variety of insults, including ß-lactam antibiotics and polymyxin B. In this study, we developed three luminescence-based transcriptional reporters for Rcs system activity and used them to test whether antibiotics used for empiric treatment of ocular infections influence Rcs system activity in a keratitis isolate of S. marcescens. These included antibiotics to which the bacteria were susceptible and resistant. Results indicate that cefazolin, ceftazidime, polymyxin B, and vancomycin activate the Rcs system to varying degrees in an RcsB-dependent manner, whereas ciprofloxacin and tobramycin activated the promoter fusions, but in an Rcs-independent manner. Although minimum inhibitory concentration (MIC) analysis demonstrated resistance of the test bacteria to polymyxin B and vancomycin, the Rcs system was activated by sub-inhibitory concentrations of these antibiotics. Together, these data indicate that a bacterial stress system that influences numerous pathogenic phenotypes and drug-tolerance is influenced by different classes of antibiotics despite the susceptibility status of the bacterium.

20.
Antibiotics (Basel) ; 10(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34356731

RESUMO

It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival of Gram-negative pathogens on the ocular surface. Clinical keratitis isolates of Pseudomonas aeruginosa (strain PAC) and Serratia marcescens (strain K904) were applied to the ocular surface of NZW rabbits followed by application of predatory bacteria. At time intervals, surviving pathogenic bacteria were enumerated. In addition, B. bacteriovorus and S. marcescens were applied to porcine organ culture corneas under contact lenses, and the ocular surface was examined by scanning electron microscopy. The ocular surface epithelial layer of porcine corneas exposed to S. marcescens, but not B. bacteriovorus was damaged. Using this model, neither pathogen could survive on the rabbit ocular surface for longer than 24 h. M. aeruginosavorus correlated with a more rapid clearance of P. aeruginosa but not S. marcescens from rabbit eyes. This study supports previous evidence that predatory bacteria are well tolerated by the cornea, but suggest that predatory bacteria do not considerably change the ability of the ocular surface to clear the tested Gram-negative bacterial pathogens from the ocular surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA